Project The House	Project ref 777
Calcs for Steel Beam	Date

Steel Beam Design

* You can add your own text, diagrams or photos here *

Design summary

	Resistance / Limit	Applied / Actual	Utilization	
Shear resistance (kip)	19.3	4.35	23 %	ок
Bending resistance (kip-ft)	15.5	13.1	84 %	ОК
Total deflection (in)	0.6	0.38	63 %	ОК
Live deflection (in)	0.4	0.27	68 %	ОК

Beam details

Beam shape	W 8 x 10
Effective span	12 ft
Minimum yield stress F _y	36,000 psi
Width	3.94 in
Depth	7.87 in
Web	0.17 in
Flange	0.21 in
Weight per foot	10.08 lb/ft
Modulus of elasticity	29,000 ksi
Second moment of area	30.75 in⁴

Lateral bracing & deflection limits

Beam is laterally braced along its length Length between lateral bracing at least every **2 ft**

Live load deflection limit: **span / 360.00 = 0.40 in** Total load deflection limit: **span / 240.00 = 0.60 in**

Loading details

λ	Self weight	
	Dead load	10.08 lb/ft
λ	Load 1: UDL - Residential Floor	
	Dead load	15 psf × 13 ft = 195 lb/ft
	Live load	40 psf × 13 ft = 520 lb/ft

Project The House	Project ref 777
Calcs for Steel Beam	Date

Reactions (unfactored)

	Dead	Live	Total
Left reaction	1.23 kip	3.12 kip	4.35 kip
Right reaction	1.23 kip	3.12 kip	4.35 kip

Check bending moments

Beam moment capacity M_R = 15.5 kip-ft >= 13.1 kip-ft, therefore OK

The top flange of the beam is to be laterally braced along its full length. To ensure adequate lateral bracing, bracing members should be attached with fasteners that provide a positive connection. Lateral bracing members should generally be regularly spaced at least every 2 feet.

Check shear force

Shear capacity V_c = 19.3 kip >= 4.35 kip, therefore OK

Allowable shear = $0.4 \times \text{minimum yield stress} \times d \times t_w$

Check deflection

Live load deflection = 0.27 in <= 0.4 in, therefore OK Total load deflection = 0.38 in <= 0.6 in, therefore OK

Notes

These calculations are based on the Manual of Steel Construction, Allowable Stress Design, Ninth Edition by the American Institute of

Project The House	Project ref 777	
Calcs for Steel Beam	Date	

Steel Construction.